3.215 \(\int \frac {a g-b g x^4}{(a+b x^4)^{3/2}} \, dx\)

Optimal. Leaf size=14 \[ \frac {g x}{\sqrt {a+b x^4}} \]

[Out]

g*x/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {383} \[ \frac {g x}{\sqrt {a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(a*g - b*g*x^4)/(a + b*x^4)^(3/2),x]

[Out]

(g*x)/Sqrt[a + b*x^4]

Rule 383

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*x*(a + b*x^n)^(p + 1))/a, x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a*d - b*c*(n*(p + 1) + 1), 0]

Rubi steps

\begin {align*} \int \frac {a g-b g x^4}{\left (a+b x^4\right )^{3/2}} \, dx &=\frac {g x}{\sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 14, normalized size = 1.00 \[ \frac {g x}{\sqrt {a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*g - b*g*x^4)/(a + b*x^4)^(3/2),x]

[Out]

(g*x)/Sqrt[a + b*x^4]

________________________________________________________________________________________

fricas [A]  time = 1.06, size = 12, normalized size = 0.86 \[ \frac {g x}{\sqrt {b x^{4} + a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*g*x^4+a*g)/(b*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

g*x/sqrt(b*x^4 + a)

________________________________________________________________________________________

giac [A]  time = 0.20, size = 12, normalized size = 0.86 \[ \frac {g x}{\sqrt {b x^{4} + a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*g*x^4+a*g)/(b*x^4+a)^(3/2),x, algorithm="giac")

[Out]

g*x/sqrt(b*x^4 + a)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 13, normalized size = 0.93 \[ \frac {g x}{\sqrt {b \,x^{4}+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b*g*x^4+a*g)/(b*x^4+a)^(3/2),x)

[Out]

g*x/(b*x^4+a)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.76, size = 12, normalized size = 0.86 \[ \frac {g x}{\sqrt {b x^{4} + a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*g*x^4+a*g)/(b*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

g*x/sqrt(b*x^4 + a)

________________________________________________________________________________________

mupad [B]  time = 5.04, size = 12, normalized size = 0.86 \[ \frac {g\,x}{\sqrt {b\,x^4+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*g - b*g*x^4)/(a + b*x^4)^(3/2),x)

[Out]

(g*x)/(a + b*x^4)^(1/2)

________________________________________________________________________________________

sympy [C]  time = 9.60, size = 80, normalized size = 5.71 \[ \frac {g x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {3}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} - \frac {b g x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {5}{4}, \frac {3}{2} \\ \frac {9}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {3}{2}} \Gamma \left (\frac {9}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b*g*x**4+a*g)/(b*x**4+a)**(3/2),x)

[Out]

g*x*gamma(1/4)*hyper((1/4, 3/2), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) - b*g*x**5*gamma(5/4
)*hyper((5/4, 3/2), (9/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(9/4))

________________________________________________________________________________________